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Abstract. The conduction-band alignments of Ge1−xSix/Ge and Ge1−xSix/Si heterostructures
grown on (111) and (001) crystallographic planes, respectively, are analysed. We have obtained
the selection rules for interband dipole optical transitions in the heterostructures, and discussed
the possibilities for specifying the types of the lowest conduction-band minima. We show
that this can be done by, for example, exploring the polarization of different phonon-assisted
band-edge optical transitions.

The conduction-band minima may be at different L or1 points of the Brillouin zone,
depending on the structure parameters. Although bulk Ge, Si, and their alloy are indirect-gap
semiconductors, the heterostructures Ge1−xSix/Ge and Ge1−xSix/Si can have a direct band
gap. We found the parameter regions where type-I and type-II band alignment were realized,
and those where the band gap was direct in quantum well (QW) structures. It is shown that
in direct-gap QW structures grown on (001) planes, direct interband optical transitions between
the nearest electron and hole subbands are allowed, but the same transitions are forbidden for
direct-gap structures grown on (111) planes.

1. Introduction

As silicon is extensively used in electric circuits, Si-based materials are of great research
interest. In particular, Ge1−xSix/Ge and Ge1−xSix/Si heterostructures have been intensively
investigated in the last few years.

The lattice constants of Ge and Si are mismatched by 4%, and either one or both of
the materials in the heterostructures are strained. In the pseudomorphic heterostructures,
the potential wells for holes are known to be in layers with a smaller Si fraction, for a
wide range of strain and for any orientation of the heterojunction plane (see, for example,
[1–5]). However, there is no clear understanding about the conduction bands of these
heterostructures over a broad range of their parameters, because there are several conduction-
band minima both in the Ge1−xSix alloy and in the pure Si and Ge, whose position depends
upon strain andx. Even for the intensively investigated Ge1−xSix/Si heterostructures
matched to unstrained Si, there are contradictory data regarding the type of band alignment
for x near 1 [1, 6, 7].

In this work we analyse the conduction bands of Ge1−xSix/Ge and Ge1−xSix/Si hetero-
structures grown on (111) and (001) crystallographic planes, respectively. Our investigation
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is based onab initio calculations made by Van de Walle and Martin [4], and by Rieger and
Vogl [5]. We have obtained the selection rules for interband dipole optical transitions in
the heterostructures, and we discuss the possibilities for specifying the type of the lowest
conduction-band minima by using the selection rules. We show that this can be done
by, for example, exploring the polarization of different phonon-assisted band-edge optical
transitions.

The band alignment of a heterojunction is found to be type-I or type-II alignment,
depending on the heterostructure parameters. The conduction-band minima may be at
different L or1 points of the Brillouin zone. Although bulk Ge, Si, and their alloy are
indirect-gap semiconductors, the Ge1−xSix/Ge and Ge1−xSix/Si heterostructures can have
a direct band gap [8]. The latter is realized if the conduction-band bottom is in the valley,
with the minimum quasi-momentum being perpendicular to the heterointerfaces. As this
takes place, in the heterostructures with thin layers an electron easily loses the corresponding
quasi-momentum by collision with heterointerfaces. This manifests itself in the fact that the
Brillouin zone of a quantum well (QW) system becomes a two-dimensional one. The quasi-
momentum directed perpendicularly to the heterojunction plane is absent in such a Brillouin
zone. We have found the parameter regions where type-I and type-II band alignments are
realized, and those where the band gap is direct, in QW structures. It is shown that in
direct-gap (001) structures, direct interband optical transitions between the nearest electron
and hole subbands are allowed, but the same transitions are forbidden for direct-gap (111)
structures. Note that in short-period superlattices, a band gap can become direct as a result
of a folding effect [9].

In section 2, the conduction band of the Ge1−xSix/Ge and Ge1−xSix/Si heterostructures
is investigated. Our results are compared with some experimental data. Selection rules
and the related possible methods of experimental exploration of the conduction band
are presented in sections 3 and 4 for Ge1−xSix/Ge and Ge1−xSix/Si heterostructures,
respectively.

2. The conduction bands of (111) Ge1−xSix/Ge and (001) Ge1−xSix/Si
heterostructures

The valence-band discontinuities in Ge1−xSix/Ge and Ge1−xSix/Si heterostructures were
derived using theab initio pseudopotentials given in [4, 5]. Using these values, one
can easily define the energy of the conduction-band minima for both materials of a
heterostructure. The energies of the minima are determined by the tops of the valence
bands, and the band gap, as well as by the change of the band gap, and shifts and splits in
the energy of the bands under strain.

We assume the lattice constant in the heterojunction plane,a‖, to be uniform along
the heterostructure. In our worka‖ corresponds to the lattice constant only for the (001)
interface orientation. For the (111) interface orientation,a‖ is equal to the distance between
the nearest atoms in the growth plane multiplied by

√
2, and defines the unit-cell deformation

in the heterojunction plane. We assume thata‖ = 5.43 Å in unstrained Si, anda‖ = 5.65 Å
in unstrained Ge. The weighted averages of the valence bands (light-hole, heavy-hole, and
spin-split-off bands) referred to those in Ge are determined by the following expressions:

E(111)
av = (90.9a‖ − 1073.6)x meV (1)

E(001)
av = (272.73a‖ − 1950.9)x meV (2)

for (111) and (001) interface orientation, respectively;a‖ is expressed in̊A. Formula (1)
was derived by using the calculations from [4]. There are later theoretical works relating
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to band offsets—for instance, [5, 10]. However, these calculations were carried out only
for the (001) orientation of the heterointerface. Expression (2) was derived employing the
results from [5]. In [5], one of the heterostructure materials was assumed to be unstrained.
However, we extrapolated the results from [5] to the case of an arbitrary strain (that is, an
arbitrarya‖). Such extrapolation is partly justified by the following. The discontinuity in the
weighted average of the valence bands varies linearly with the difference of the Si fraction
in the materials of a heterostructure [4, 5], and the coefficient of proportionality depends
only on a‖ for all interface orientations [4]. The value (2) leads to underestimation of the
valence-band offsets compared to the calculations in [4] for the (001) plane. For the Ge/Si
heterostructures grown pseudomorphically on Si and Ge, the value of the valence-band
discontinuity (2) differs from that in [4] by 70 and 100 meV, respectively. The valence-
band offsets [4] are in better agreement with those [2] measured experimentally for the
Ge1−xSix alloy (0 < x < 0.3) grown pseudomorphically on Ge, although the values [5]
of the valence-band offsets fall within the limits of experimental error. On the other hand,
the data [1] on the band gap of pseudomorphic Ge1−xSix (0.76< x < 1) single layers on
silicon are better described by [5], but the band gaps obtained employing the results in [5]
and [4] differ from the experimental data by less than 2%.

The band gap for an unstrained Ge1−xSix alloy was investigated recently by Weber and
Alonso [11]. For the differences in energy of the conduction-band minima at the L and1

points and the top of the valence band (ELg andE1g , respectively), we use the analytical
expressions from this paper (T = 4.2 K):

ELg = 740+ 1270x meV (3)

E1g = 931+ 18x + 206x2 meV. (4)

We assume these expressions to be valid for 0< x < 1. Such extrapolation is quite justified
for (4), because formula (4) is derived from the experimental data forE1g which fall in the
broad range ofx (0.15 < x < 1). Recall that in unstrained Ge1−xSix , for x < 0.15, the
lowest conduction-band minima are at L points, but those forx > 0.15 occur at1 points.
The experimental data forELg lie in a narrow composition range, and formula (3) can lead
to a large error forx near 1.

To determine the strain splittings of the bands, and the variation of the energy gap, we
use the theoretical values for the deformation potentials in Ge and Si from [4] for the (111)
Ge1−xSix/Ge heterostructure and from [5] for the (001) Ge1−xSix/Si heterostructure. To
find all of the required parameters for the alloy, we perform a linear interpolation between
the values for the pure elements. Fora‖ for an unstrained alloy, we use the expression [13]

a‖ = 5.65− 0.24x(1− x)− 0.22x2 Å.

The weighted averages of the L (1) minima are given by

EL,1av = Eav + EL,1g +
(
4d + 1

3
4u − a

)L,1
Sp(ε)+ 1so

3
(5)

where the third term describes the shift of the energy minima under homogeneous
deformation [4],ε is the strain tensor, and1so is the spin–orbit splitting.

2.1. The conduction band in (111) Ge1−xSix/Ge heterostructures

Let us consider in some detail the conduction band in the Ge1−xSix/Ge heterostructure. In
this heterostructure for the (111) interface, a uniaxial strain splits the minima at L into two
inequivalent groups: the band along [111] (we will denote it as the 1L valley), and the
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other three bands (3L valleys). The minima at1 remain degenerate. The energies of the L
and1 minima are determined by the expressions

E1L,3L = ELav + α1L,3L4Lu εxy (6)

E1 = E1av (7)

whereα1L = 2 for the 1L valley, andα3L = −2/3 for the 3L valleys [4], andεxy is the
strain tensor component.

Figure 1. Regions of specific relative energy positions of the conduction-band-edge states in
germanium and in the alloy for a (111) Ge1−xSix/Ge heterostructure. At the bottom of the
figure, the relative energy positions of the conduction-band edge in the germanium and the alloy
are shown for all of the regions. Quantum confinement effects are not taken into account.a‖
corresponds to the buffer layer on which a heterostructure is grown.

As mentioned above, the conduction-band minima in the Ge layer may lie at different
points of the Brillouin zone, namely, at 1L, 3L, or1 points. Furthermore, type-I or type-II
band alignment may be realized.

Let us at first neglect the quantum confinement effects. For 5.43 Å < a‖ < 5.65 Å,
in the Ge layer the 3L valleys are not higher than the 1L valleys; moreover, the1 valleys
in the Ge layer are higher than those in the alloy layer. For simplicity, we consider only
the lowest conduction-band minima in either layer for various values ofa‖ and x. Using
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(6) and (7), we find the regions of fixed relative energy positions of the conduction-band-
edge states in germanium and in the alloy for the (111) Ge1−xSix/Ge heterostructure (see
figure 1). One can see from the figure that the conduction-band edge in Ge lies lowest
in energy for the regions labelled 1, 2, and 4 (the type-I heterojunction), and highest for
regions 3 and 5 (the type-II heterojunction).

We should remark that figure 1 is to be considered illustrative and qualitative, and
merely demonstrates possible situations in the conduction band for various parameters of
heterostructures. This lack of quantitative reliability may be attributed to errors in the
energies of L minima (3), deformation potentials, and valence-band offsets (1). In addition,
the strain in the layers may be quite sizeable (up to 4%)—such that, strictly speaking,
nonlinearities are appreciable [12]. In this work we do not take these effects into account.
Thus, in reality the regions of a specific conduction-band structure (in the implied meaning)
can differ from those shown in figure 1. Moreover, it is quite possible that some regions
depicted in figure 1 do not actually exist, and—vice versa—regions with a different structure
of the conduction band may exist. Therefore, experimental examination of the conduction
band is, of course, necessary.

In a Ge or alloy layer of finite width, the quantum confinement causes an increase
in energy of the conduction-band minima. Consequently it makes the regions in figure 1
change and, in general, appear or disappear.

Employing results given by Van de Walle and Martin [4], and (3), it can be shown that
the 1L valley in an alloy lies lower in energy than that in Ge for 5.43 Å < a‖ < 5.65 Å
and 0< x < 1. Therefore, although the Ge1−xSix/Ge heterostructure can have a direct
band gap, here the potential wells for electrons and holes are at different layers (type-II
confinement). This case is realized for region 3 in figure 1 in structures with thin Ge1−xSix
layers.

2.2. The conduction band in (001) Ge1−xSix/Si heterostructures

In each layer of a Ge1−xSix/Si heterostructure grown on the (001) plane, the strain splits
the 1 minima into four components along the [100], [1̄00], [010], and [0̄10] directions
(41 minima), and two components along [001] and [001̄] (21 minima). The four L points
remain equivalent. The energies of the L and1 minima are given by

EL = ELav (8)

E21,41 = E1av + α21,4141u (εzz − εxx) (9)

whereα21 = 2/3 for 21 minima, andα41 = −1/3 for 41 minima.
Figure 2 shows the relative energy positions of the conduction-band-edge states in layers

of a Ge1−xSix/Si heterostructure for various values ofa‖ and x. Only the lowest valleys
in each layer are pictured. The quantum confinement is not taken into account. For all of
the regions in figure 2 except the fourth one, the lowest conduction-band minima in silicon
are at 21, and lie lower than in the alloy. Therefore, over a wide range of parameters,
the band-edge optical transitions in the heterostructures with thin Si layers will be direct
in quasi-momentum space. However, these transitions will be indirect in coordinate space,
because, as mentioned above, the valence-band edge in the alloy layer lies highest in energy.

Employing tunnelling, one can reduce the separation of the electrons and holes by
decreasing the width of either or both of the heterostructure layers. If this is done, the
quantum confinement makes the regions in figure 2 change, and might cause them to appear
or disappear. It should be remembered that quantum confinement in Si layers reduces the
parameter regions for which Ge1−xSix/Si is a direct-gap structure. This is due to the fact
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Figure 2. Regions of specific relative energy positions of the conduction-band-edge states in
Si and in the alloy for a (001) Ge1−xSix/Si heterostructure. At the bottom of the figure, the
relative energy positions of the conduction-band edge in Si and in the alloy are shown for all
of the regions. Quantum confinement effects are not taken into account.a‖ corresponds to the
buffer layer on which a heterostructure is grown.

that the 21 minima in the alloy lie higher in energy than those in Si over the entire range of
parameters considered (5.43 Å < a‖ < 5.65 Å, 0 < x < 1), and the quantum confinement
causes an increase in energy of the 21 minima in silicon. Thus, the 21 minima in a rather
thin Si layer may be higher than some others. In contrast, decreasing the alloy width could
just lead to growth of the parameter region over which the heterostructure has a direct band
gap. That is, the quantum confinement in an alloy layer reduces region 4 in figure 2, and
keeps it close up to thex-axis.

The approach given in [4] leads to very similar results: regions of the fixed conduction-
band structure differ insignificantly from those in figure 2. In particular, the region
corresponding to the fourth region in figure 2 is slightly bigger, and extends fromx ≈ 0.6
to x = 1.

Let us compare the results which have been obtained by employing the results from [5],
and (4), with some experimental data for Ge1−xSix layers grown pseudomorphically on
unstrained Si. The energy differences between the lowest conduction-band edge and the
top of the valence bands in the alloy, as noted above, agree within 2% (to better than
≈13 meV) with the expression valid forx > 0.76, which was experimentally obtained
in [1]. The energy difference between the1 minima in Si and the 41 minima in the alloy,
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1Ec, is less than 8 meV for region 4 in figure 2. This fact agrees with [1], where the
conduction-band offset,|1Ec|, was shown to be less than 10 meV for the Ge0.17Si0.83/Si
heterostructure. Although the discrepancy between the theoretical [5] and experimental [1]
values of the band gap is relatively small, it is still more than the conduction-band offset
|1Ec|. Thus the question of the real existence of type-I band alignment is still open. As far
as we are aware, this problem has not yet been solved experimentally, either: forx > 0.64
there is experimental evidence which is more readily explained for a type-I [1, 6] or type-
II [7] band alignment. In the following sections, we will discuss the problem of specifying
the type of the lowest conduction-band minima, as well as the type of band alignment.

3. Selection rules for optical transitions in (111) Ge1−xSix/Ge heterostructures

In the previous section, we have shown that the conduction-band bottoms in the
Ge1−xSix/Ge heterostructure can be in 3L, 1L, or1 valleys. In this section the selection
rules for the dipole indirect optical transitions between the valleys and the valence band
are considered. Because of the strain (a‖ < 5.65) and the quantum confinement effect, the
top of the valence band is formed from the heavy-hole states with large mass in the [111]
direction. Therefore, we consider transitions only in or from these states. Note that if the
lattice constanta‖ is larger than that in an unstrained alloy, then in very thin Ge layers
(width less than 10–20̊A), the top of the valence bands can be formed from the light-hole
states. This is possible only for the above deformations, because in this case the top of the
heavy-hole subband is lower than the top of the light-hole subband in the alloy.

We consider a QW structure with a symmetry plane at the centre of a quantum well.
The groups of the wave vector at different points of the Brillouin zone, and the irreducible
representations for the corresponding electron and hole wave functions are shown in table
1(a). Representations of the momentum operator components and those of the phonon wave
functions are shown in the same table. We use common notation for the phonons: the letters
L, T for longitudinal and transverse phonons, and O, A for optical and acoustical phonons.

3.1. hh–1L transitions

By using a standard method [14, 15], we find the following selection rules for optical
phonon-assisted transitions between the heavy-hole subband and the 1L valley. Similarly
to the case for bulk germanium, the LO- and TA-phonon-assisted transitions are forbidden
because of parity conservation. TO-phonon-assisted transitions are allowed for any light
polarization. LA-phonon-assisted transitions are allowed only for photons which have
nonzero electric field componentsE on the (111) plane.

As we noted above, a direct-gap structure may be realized if the conduction-band bottom
is in the 1L valley. But the direct dipole optical transitions from heavy-hole and light-
hole subbands in 1L valleys are forbidden. The problem is that the electron and hole
wave functions have even parity (this is denoted by the superscript+ in the representation
notation), but dipole transitions are forbidden between same-parity states. This assertion is
not valid for transitions with a change in the level number—for example, for transitions
between the second hole subband and the first 1L valley (electron) subband. This is due to
the odd parity of wave functions in even subbands. Thus the wave function representations
in even subbands are L−6 and L−4 + L−5 for the electron and hole, respectively. Note that in
this case the LO- and TA-phonon-assisted transitions are allowed, too.

It can be proved that the hh–1L LA-phonon-assisted transition is forbidden forE ‖ [111]
in an asymmetric heterostructure.
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Table 1. (a) Wave-vector groups at different points of the Brillouin zone, and irreducible
representations for electron and hole wave functions, phonons, and operator momentum
components for a (111) Ge1−xSix/Ge structure. A normal direction to the growth plane is
labelledz; two directions in the growth plane are labelledx and y. We use the notation for
irreducible representations for the D3d and C4v groups from [14], for the C2v, C2h, andσ -groups
we use that from tables 2–4, and for the D4h group we use that from [18] and table 5. (b) As
(a), but for the (001) Ge1−xSix/Si structure.

(a) Irreducible
representation Group

Heavy holes L+4 + L+5
Light holes L+6

pz L′1
px , py L′3

1L Electrons L+6 D3d

valley Phonons LA L−2
LO L+1
TA L+3
TO L−3

3L Electrons B+1 + B+2
valley Phonons LA A−1

LO A+1
TA A+1 + A+2 C2h

TO A−1 + A−2
pz A−2

px , py A−1
1 Electrons B1 + B2

valley Phonons LA A1

LO A1

TA A2 σ

TO A2

pz A1

px , py A2

3.2. hh–3L transitions

The dipole hh–3L transitions are allowed for any light polarization, if assisted by LA and
TO phonons, and are forbidden for other phonons.

Thus, for photons withE ‖ [111], the hh–3L LA-phonon-assisted transitions are
allowed, and the hh–1L transitions are forbidden. It is interesting to find the intermediate
states for allowed transitions. It turns out that allowed transitions are realized through
L−4 +L−5 and B−1 +B−2 states. The intermediate L−4 +L−5 state arises from the0−8 conduction-
band state of bulk Ge, and the B−1 +B−2 state arises from the L−5 +L−4 valence-band state. It
is more probable that transitions are through the B−

1 +B−2 state, because it is nearest to the
initial valence-band state. In bulk Ge, optical LA-phonon-assisted transitions are realized
through the intermediate state in the0−7 conduction band [16]. In a heterostructure, the
same transitions are realized through the L−

6 state which arises from0−7 . These transitions
are caused only by the electrical field components located in the (111) plane. The energy



The conduction band and selection rules 4849

Table 1. (Continued)

(b) Irreducible
representation Group

Heavy holes E′1
+

Light holes E′2
+ D4h

pz A−2
px , py E−

21 Electrons 16

valley Phonons LA 11

LO 1′2
TA 15 C4v

TO 15

pz 11

px , py 15

41 Electrons E′

valley Phonons LA A1

LO A2

TA B1 + B2 C2v

TO B1 + B2

pz A1

px , py B1, B2

Table 2. Characters of the irreducible representations for the double C2h group. The notation
for the group elements is taken from [18].

C′2h E Q C2 QC2 σ Qσ I QI

A+1 1 1 1 1 1 1 1 1

A+2 1 1 −1 −1 −1 −1 1 1

A−1 1 1 1 1 −1 −1 −1 −1

A−2 1 1 −1 −1 1 1 −1 −1

B+1 1 −1 i −i i −i 1 −1

B+2 1 −1 −i i −i i 1 −1

B−1 1 −1 i −i −i i −1 1

B−2 1 −1 −i i i −i −1 1

difference between the initial and intermediate states is less for transitions through the
L−6 state than for transitions through the B−1 + B−2 state; therefore, the probability of the
hh–3L transition through the L−6 state is higher. This means that the probability of the LA-
phonon-assisted hh–3L transition caused byE ‖ [111] is less than that of the one caused
by E ⊥ [111].

3.3. hh–1 transitions

Symmetry allows any hh–1 phonon-assisted optical transition for any light polarization.
Yet, in bulk Si and in bulk Ge1−xSix alloy, only TA- and TO-phonon-assisted transitions
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Table 3. The irreducible representation characters of the doubleσ -group. The notation for the
group elements is taken from [18].

σ ′ E Q σ Qσ

A1 1 1 1 1

A2 1 1 −1 −1

B1 1 −1 i −i

B2 1 −1 −i i

Table 4. The irreducible representation characters of the double C2v group. σ1v andσ2v denote
symmetry planes crossing the C2 axis.

C′2v E Q C2, QC2 σ1v, Qσ1v σ2v, Qσ2v

A1 1 1 1 1 1

A2 1 1 1 −1 −1

B1 1 1 −1 1 −1

B2 1 1 −1 −1 1

E′ 2 −2 0 0 0

Table 5. The irreducible representation characters of the double D4h group. u andu′ denote
twofold rotation axes which are perpendicular to the fourfold rotation axis C4.

D′4h E Q C2, QC2 C4, C−1
4 QC4, QC−1

4 2u, 2Qu 2u′, 2Qu′

E′1
+ 2 −2 0

√
2 −√2 0 0

E′2
+ 2 −2 0 −√2

√
2 0 0

E′1
− 2 −2 0

√
2 −√2 0 0

E′2
− 2 −2 0 −√2

√
2 0 0

D′4h I QI IC2, QIC2 IC4, IC−1
4 QIC4, QIC−1

4 2Iu, 2QIu 2Iu′, 2QIu′

E′1
+ 2 −2 0

√
2 −√2 0 0

E′2
+ 2 −2 0 −√2

√
2 0 0

E′1
− −2 2 0 −√2

√
2 0 0

E′2
− −2 2 0

√
2 −√2 0 0

between the valence band and the1 valleys are observed [1, 11]. Symmetry does not
account for the absence of longitudinal-phonon-assisted transitions [15]; therefore, in the
heterostructure Ge1−xSix/Ge, only transverse-phonon-assisted transitions can be observed.

In summary, we now briefly formulate the selection rules for phonon-assisted
optical transitions between the valence band and different conduction-band valleys in a
Ge1−xSix/Ge heterostructure grown on a (111) plane. If the conduction-band minima
are at1, then the TO-phonon-assisted optical transitions are predominant [1]. When
the conduction-band minima are at any L points, LA-phonon-assisted optical transitions
prevail [17]. LA-phonon-assisted transitions from 1L and 3L valleys differ in polarization.
LA-phonon-assisted transitions withE ‖ [111] are forbidden for the 1L valley, and are
reduced for 3L valleys.
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4. Selection rules for optical transitions in (001) Ge1−xSix/Si heterostructures

Again, we consider a QW heterostructure with the symmetry plane in the centre of a quantum
well. The notation for the wave-vector groups and irreducible representations is shown in
table 1(b). As we noted, the top of the valence band lies highest in the layer with the largest
Ge fraction (in this case, in the alloy layer). In the alloy layer, the relative positioning of
the valence-band tops for heavy and light holes depends on a lattice constant,a‖. If a‖ is
less than that in an unstrained alloy, then the top of the heavy-hole band is higher, while,
in contrast, the top of the light-hole band is higher for the reverse relationship between the
lattice constants (if quantum confinement is neglected). This has to be taken into account
in the selection rule analysis.

As shown in figure 2, the conduction-band bottoms may be in 21 or 41 valleys.
The phonon-assisted transitions from 41 valleys to light-hole and heavy-hole subbands are
allowed for any phonon and any light polarization.

The transverse-phonon-assisted transitions from 21 valleys to light-hole and heavy-hole
subbands are allowed for any light polarization. The longitudinal-phonon-assisted transitions
to light/heavy hole subbands are allowed forE ⊥ [001]. In the case whereE ‖ [001],
the LA-phonon-assisted transitions between 21 valleys and a light-hole band are forbidden,
but the transitions between 21 valleys and a heavy-hole subband are allowed. In contrast,
the LO-phonon-assisted transitions to a light-hole subband are allowed, and transitions to a
heavy-hole band are forbidden. Longitudinal-phonon-assisted transitions are not observed
in Si and the alloy. Therefore, in the study of optical transitions, one cannot distinguish
between those from 41 valleys and those from 21 valleys.

Unlike the transitions from 41 valleys, transitions from 21 valleys can be realized
without scattering. They are direct in momentum space and indirect in coordinate space.
Symmetry allows these transitions to light-hole and heavy-hole subbands, if the electrical
field vector has nonzero components in the (001) plane. ForE ⊥ (001), transitions to the
light-hole subband are allowed, but transitions to the heavy-hole subband are forbidden.

The direct transition intensity must rise with decreasing layer thickness, because of the
greater overlap of wave functions in the coordinate and momentum spaces. In contrast, the
zero-phonon transition intensity from the 41 valleys (region 4 in figure 2) depends weakly on
Si and the alloy layer thickness, given a good quality of heterointerfaces. Therefore, one can
distinguish between the transitions from 41 and 21 valleys by investigating the dependency
of the ratio of the phonon-assisted-line intensity to the zero-phonon-line intensity on the
layer thickness.

Certainly, there are more direct methods for identification of the type of the lowest
valley in a conduction band. For example, this may be done by making cyclotron resonance
measurements of the electron masses. However, these measurements require a very high
quality of structure. The requirements for structure quality allowing observation of optical
phenomena may be less stringent, and, consequently, the methods suggested here can be
easier.
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